Ordered Ti-doped FeVO4 nanoblock photoanode with improved charge properties for efficient solar water splitting

J Colloid Interface Sci. 2021 Dec 15:604:562-567. doi: 10.1016/j.jcis.2021.07.037. Epub 2021 Jul 9.

Abstract

Highly photoactive FeVO4 photoanodes with ordered nanoblock morphology and uniform Ti-doping were prepared by drop-casting mixed Ti and V precursors onto FeOOH nanorod films and following an annealing process. The results indicate that Ti4+ is uniformly doped into the FeVO4 lattice by substituting V5+ and provides an increased number of O2- vacancies. The optimized film thickness and doping level are 620 nm and 0.3%, respectively. Compared to the undoped sample, the Ti-doped photoanode showed ~ 219% enhancement in photocurrent at 1.0 V vs Ag/AgCl under back illumination of AM 1.5, reaching a state-of-the-art value of ~ 1.47 mA cm-2, and also achieved stable and efficient overall water splitting activity with evolution rates of 28.3 and 14.1 μmol cm-2h-1 for H2 and O2, respectively. The excellent PEC performance could be attributed to the remarkably enhanced charge carrier concentration and conductivity, and the facilitated charge transfer kinetics across the semiconductor/electrolyte interface, as a result of Ti-doping.

Keywords: Drop-casting; FeVO(4); Nanoblock; Photoelectrochemical water splitting; Ti doping.