Plasmonic colors in titanium nitride for robust and covert security features

Opt Express. 2021 Jun 21;29(13):19586-19592. doi: 10.1364/OE.423155.

Abstract

A mechanically robust metasurface exhibiting plasmonic colors across the visible and the near-IR spectrum is designed, fabricated, and characterized. Thin TiN layers (41 nm in thickness) prepared by plasma-enhanced atomic layer deposition (ALD) are patterned with sub-wavelength apertures (75 nm to 150 nm radii), arranged with hexagonal periodicity. These patterned films exhibit extraordinary transmission in the visible and the near-IR spectrum (550 nm to 1040 nm), which is accessible by conventional Si CCD detectors. The TiN structures are shown to withstand high levels of mechanical stresses, tested by rubbing the films against a lint-free cloth under 14.5 kPa of load for 30 minutes, while structures patterned on gold, a widely used plasmonic material, do not. The subwavelength nature of the plasmonic resonances, coupled with robustness and durability of TiN, makes these structures an attractive choice for use in nanoscale security features for heavily handled objects. Furthermore, ALD of these films enables scalability, which in conjunction with the cost-effectiveness of the process and material (TiN) makes the entire process industry friendly.