Physical, chemical, and biological characterization of ginsenoside F1 incorporated in nanostructured lipid carrier

J Food Biochem. 2021 Jul 14:e13860. doi: 10.1111/jfbc.13860. Online ahead of print.

Abstract

This study was aimed to determine the physical property and thermodynamic stability of nanostructured lipid carrier suspension incorporating ginsenoside F1 (GF1_NLC), and to evaluate its transport and antioxidant properties. GF1_NLC suspension possessed spherical particles with an average size of 98.9 nm, and the encapsulation efficiency reached approximately 90%. There was a good compatibility between ginsenoside F1 (GF1) and the nanostructured lipid carrier (NLC) formulation, giving no contribution to the changes in the structural organization and crystallization behavior of lipid particles. However, the incorporation of GF1 reduced the thermodynamic stability of the lipid particles. The permeability of GF1_NLC (39.2%) across Caco-2 cell monolayer was higher than that of free GF1 (26.0%); however, no significant differences were observed in the radical scavenging activity (84.1% and 85.5%, respectively). In conclusion, NLC could be a potential candidate for the delivery of GF1 into the living body due to its small particle size, high encapsulation efficiency, and improved permeability. PRACTICAL APPLICATIONS: Poor water solubility in an aqueous solution and low absorption rate of ginsenoside F1 in the intestinal track limit its practical application in food systems. In this study, ginsenoside F1 was encapsulated in nanostructured lipid carrier to enhance its water solubility and absorption rate. The results of the encapsulated ginsenoside F1 showed high encapsulation efficiency of 90% with fine particle size of 98.9 nm that could correspond to the enhancement of water solubility in an aqueous solution and permeability across Caco-2 cell monolayer. The results may encourage the food industry to utilize this encapsulation technique for the enhancement of the functional properties of poorly water-soluble bioactive compounds.

Keywords: ginsenoside F1; intestinal permeability; nanostructured lipid carrier; radical scavenging activity; thermodynamic stability.