Contributions of Escherichia coli and Its Motility to the Formation of Dual-Species Biofilms with Vibrio cholerae

Appl Environ Microbiol. 2021 Aug 26;87(18):e0093821. doi: 10.1128/AEM.00938-21. Epub 2021 Aug 26.

Abstract

Biofilm formation is important in both the environmental and intestinal phases of the Vibrio cholerae life cycle. Nevertheless, most studies of V. cholerae biofilm formation focus on monospecies cultures, whereas nearly all biofilm communities found in nature consist of a variety of microorganisms. Multispecies biofilms formed between V. cholerae and other bacteria in the environment and the interactions that exist between these species are still poorly understood. In this study, the influence of Escherichia coli on the biofilm formation of V. cholerae was studied in the context of both in vitro coculture and in vivo coinfection. To understand the underlying synergistic mechanisms between these two species and to investigate the role of E. coli in V. cholerae biofilm formation, different pathotypes of E. coli and corresponding deletion mutants lacking genes that influence flagellar motility, curli fibers, or type I pili were cocultured with V. cholerae. Our findings demonstrate that the presence of commensal E. coli increases biofilm formation at the air-liquid interface in vitro and the generation of biofilm-like multicellular clumps in mouse feces. Examination of laboratory E. coli flagellar-motility ΔfliC and ΔmotA mutants in dual-species biofilm formation suggests that flagellar motility plays an important role in the synergistic interaction and coaggregation formation between V. cholerae and E. coli. This study facilitates a better understanding of how V. cholerae resides in harsh environments and colonizes the intestine. IMPORTANCE Biofilms play an important role in the V. cholerae life cycle. Until now, only monospecies biofilm formation of V. cholerae has been well studied. However, in nature, bacteria live in complex microbial communities, where biofilm is mostly composed of multiple microbial species that interact to cooperate with or compete against each other. Uncovering how V. cholerae forms multispecies biofilms is critical for furthering our understanding of how V. cholerae survives in the environment and transitions to infecting the human host. In this work, the dual-species biofilm containing V. cholerae and Escherichia coli was investigated. We demonstrate that the presence of commensal E. coli increased overall biofilm formation. Furthermore, we demonstrate that the motility of E. coli flagella is important for V. cholerae and E. coli to form coaggregation clumps in a dual-species biofilm. These results shed light on a new mechanism for understanding the survival and pathogenesis of V. cholerae.

Keywords: biofilm; coaggregation; dual species; motility; pathogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biofilms*
  • Cholera / microbiology
  • Escherichia coli / physiology*
  • Escherichia coli Infections / microbiology
  • Feces / microbiology
  • Mice
  • Microbial Interactions
  • Vibrio cholerae / physiology*