Assessing chemical risk within an ecosystem services framework: Implementation and added value

Sci Total Environ. 2021 Oct 15:791:148631. doi: 10.1016/j.scitotenv.2021.148631. Epub 2021 Jun 29.

Abstract

An ecosystem services (ES) approach to chemical risk assessment has many potential advantages, but there are also substantial challenges regarding its implementation. We report the findings of a multi-stakeholder workshop that evaluated the feasibility of adopting an ES approach to chemical risk assessment using currently available tools and data. Also evaluated is the added value such an approach would bring to environmental decision making. The aim was to build consensus across disparate stakeholders and to co-produce a common understanding of the regulatory benefits and feasibility of implementing an ES approach in European chemicals regulation. Workshop discussions were informed by proof of concept studies and resulted in the development of a novel tiered framework for assessing chemical risk to ES delivery. There was consensus on the substantial added value of adopting an ES-based approach for regulatory decision making. Ecosystem services provide a common currency and a 'unifying approach' across environmental compartments, stressors and regulatory frameworks. The ES approach informs prioritisation of risk and remedial action and aids risk communication and risk management. It facilitates a more holistic assessment, enables ES trade-offs to be compared across alternative interventions, and supports comparative risk assessments and a socio-economic analysis of management options and decisions. Key to realising this added value is a shift away from using a single threshold value to categorise risk, towards a consideration of the exposure-effect distribution for individual ES of interest. Also required is the development of an integrated systems-level approach across regulatory frameworks and agreement on specific protection goals and scenarios for framing environmental risk assessments. The need to further develop tools for extrapolating toxicity data to service providers and ES delivery, including logic chains and ecological production functions, was highlighted. Also agreed was the need for methods and metrics for ES valuation to be used in assessing trade-offs.

Keywords: Chemical regulation; Ecological models; Environmental risk assessment; Prospective; Retrospective; Tiered framework.

MeSH terms

  • Conservation of Natural Resources*
  • Ecosystem*
  • Risk Assessment
  • Risk Management