Coherent Phonon Disruption and Lock-In during a Photoinduced Charge-Density-Wave Phase Transition

J Phys Chem Lett. 2021 Jul 15;12(27):6439-6447. doi: 10.1021/acs.jpclett.1c01673. Epub 2021 Jul 8.

Abstract

Ultrafast manipulation of phase domains in quantum materials is a promising approach to unraveling and harnessing interwoven charge and lattice degrees of freedom. Here we find evidence for coupling of displacively excited coherent acoustic phonons (CAPs) and periodic lattice distortions (PLDs) in the intensely studied charge-density-wave material, 1T-TaS2, using 4D ultrafast electron microscopy (UEM). Initial photoinduced Bragg-peak dynamics reveal partial CAP coherence and localized c-axis dilations. Weak, partially coherent dynamics give way to higher-amplitude, increasingly coherent oscillations, the transition period of which matches that of photoinduced incommensurate domain growth and stabilization from the nearly-commensurate phase. With UEM imaging, it is found that phonon wave trains emerge from linear defects 100 ps after photoexcitation. The CAPs consist of coupled longitudinal and transverse character and propagate at anomalously high velocities along wave vectors independent from PLDs, instead being dictated by defect orientation. Such behaviors illustrate a means to control phases in quantum materials using defect-engineered coherent-phonon seeding.