Wdpcp regulates cellular proliferation and differentiation in the developing limb via hedgehog signaling

BMC Dev Biol. 2021 Jul 5;21(1):10. doi: 10.1186/s12861-021-00241-9.

Abstract

Background: Mice with a loss of function mutation in Wdpcp were described previously to display severe birth defects in the developing heart, neural tube, and limb buds. Further characterization of the skeletal phenotype of Wdpcp null mice was limited by perinatal lethality.

Results: We utilized Prx1-Cre mice to generate limb bud mesenchyme specific deletion of Wdpcp. These mice recapitulated the appendicular skeletal phenotype of the Wdpcp null mice including polydactyl and limb bud signaling defects. Examination of late stages of limb development demonstrated decreased size of cartilage anlagen, delayed calcification, and abnormal growth plates. Utilizing in vitro assays, we demonstrated that loss of Wdpcp in skeletal progenitors lead to loss of hedgehog signaling responsiveness and associated proliferative response. In vitro chondrogenesis assays showed this loss of hedgehog and proliferative response was associated with decreased expression of early chondrogenic marker N-Cadherin. E14.5 forelimbs demonstrated delayed ossification and expression of osteoblast markers Runx2 and Sp7. P0 growth plates demonstrated loss of hedgehog signaling markers and expansion of the hypertrophic zones of the growth plate. In vitro osteogenesis assays demonstrated decreased osteogenic differentiation of Wdpcp null mesenchymal progenitors in response to hedgehog stimulation.

Conclusions: These findings demonstrate how Wdpcp and associated regulation of the hedgehog signaling pathway plays an important role at multiple stages of skeletal development. Wdpcp is necessary for positive regulation of hedgehog signaling and associated proliferation is key to the initiation of chondrogenesis. At later stages, Wdpcp facilitates the robust hedgehog response necessary for chondrocyte hypertrophy and osteogenic differentiation.

Keywords: Chondrogenesis; Differentiation; Growth plate; Hedgehog; Limb bud; Osteogenesis; Proliferation; Wdpcp.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation
  • Cell Proliferation
  • Chondrocytes
  • Chondrogenesis
  • Cytoskeletal Proteins / genetics*
  • Hedgehog Proteins* / genetics
  • Limb Buds / growth & development*
  • Mice
  • Osteogenesis*
  • Signal Transduction

Substances

  • Cytoskeletal Proteins
  • Hedgehog Proteins
  • Wdpcp protein, mouse