Fluidic Considerations of Measuring Intracranial Pressure Using an Open External Ventricular Drain

Cureus. 2021 May 29;13(5):e15324. doi: 10.7759/cureus.15324.

Abstract

Measurement of intracranial pressure (ICP) during cerebrospinal fluid (CSF) drainage with an external ventricular drain (EVD) typically requires stopping the flow during measurement. However, there may be benefits to simultaneous ICP measurement and CSF drainage. Several studies have evaluated whether accurate ICP measurements can be obtained while the EVD is open. They report differing outcomes when it comes to error, and hypothesize several sources of error. This study presents an investigation into the fluidic sources of error for ICP measurement with concurrent drainage in an EVD. Our experiments and analytical model both show that the error in pressure measurement increases linearly with flow rate and is not clinically significant, regardless of drip chamber height. At physiologically relevant flow rates (40 mL/hr) and ICP set points (13.6 - 31.3 cmH2O or 10 - 23 mmHg), our model predicts an underestimation of 0.767 cmH2O (0.56 mmHg) with no observed data point showing error greater than 1.09 cmH2O (0.8 mmHg) in our experiment. We extrapolate our model to predict a realistic worst-case clinical scenario where we expect to see a mean maximum error of 1.06 cmH2O (0.78 mmHg) arising from fluidic effects within the drainage system for the most resistive catheter. Compared to other sources of error in current ICP monitoring, error in pressure measurement due to drainage flow is small and does not prohibit clinical use. However, other effects such as ventricular collapse or catheter obstruction could affect ICP measurement under continuous drainage and are not investigated in this study.

Keywords: bioengineering; catheter; cerebrospinal fluid; continuous measurement; external ventricular drain; intracranial hypertension; neuro-monitoring; neuro-surgery; neurology and critical care; traumatic brain injury.

Grants and funding

Work in the Lutz lab was funded by the Pilcher Faculty Fellowship in the University of Washington Department of Bioengineering.