Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0

J Adv Model Earth Syst. 2021 Apr;13(4):e2020MS002413. doi: 10.1029/2020MS002413. Epub 2021 Apr 7.

Abstract

The Goddard Earth Observing System composition forecast (GEOS-CF) system is a high-resolution (0.25°) global constituent prediction system from NASA's Global Modeling and Assimilation Office (GMAO). GEOS-CF offers a new tool for atmospheric chemistry research, with the goal to supplement NASA's broad range of space-based and in-situ observations. GEOS-CF expands on the GEOS weather and aerosol modeling system by introducing the GEOS-Chem chemistry module to provide hindcasts and 5-days forecasts of atmospheric constituents including ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and fine particulate matter (PM2.5). The chemistry module integrated in GEOS-CF is identical to the offline GEOS-Chem model and readily benefits from the innovations provided by the GEOS-Chem community. Evaluation of GEOS-CF against satellite, ozonesonde and surface observations for years 2018-2019 show realistic simulated concentrations of O3, NO2, and CO, with normalized mean biases of -0.1 to 0.3, normalized root mean square errors between 0.1-0.4, and correlations between 0.3-0.8. Comparisons against surface observations highlight the successful representation of air pollutants in many regions of the world and during all seasons, yet also highlight current limitations, such as a global high bias in SO2 and an overprediction of summertime O3 over the Southeast United States. GEOS-CF v1.0 generally overestimates aerosols by 20%-50% due to known issues in GEOS-Chem v12.0.1 that have been addressed in later versions. The 5-days forecasts have skill scores comparable to the 1-day hindcast. Model skills can be improved significantly by applying a bias-correction to the surface model output using a machine-learning approach.

Keywords: air pollution; atmospheric chemistry; global modeling; real‐time forecasting.