Formation of 3D Self-Organized Neuron-Glial Interface Derived from Neural Stem Cells via Mechano-Electrical Stimulation

Adv Healthc Mater. 2021 Oct;10(19):e2100806. doi: 10.1002/adhm.202100806. Epub 2021 Jul 4.

Abstract

Due to dissimilarities in genetics and metabolism, current animal models cannot accurately depict human neurological diseases. To develop patient-specific in vitro neural models, a functional material-based technology that offers multi-potent stimuli for enhanced neural tissue development is devised. An electrospun piezoelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) nanofibrous scaffold is systematically optimized to maximize its piezoelectric properties while accommodating the cellular behaviors of neural stem cells. Hydro-acoustic actuation is elegantly utilized to remotely activate the piezoelectric effect of P(VDF-TrFE) scaffolds in a physiologically-safe manner for the generation of cell-relevant electric potentials. This mechano-electrical stimulation, which arose from the deflection of the scaffold and its consequent generation of electric charges on the scaffold surface under hydro-acoustic actuation, induces the multi-phenotypic differentiation of neural stem cells simultaneously toward neuronal, oligodendrocytic, and astrocytic phenotypes. As compared to the traditional biochemically-mediated differentiation, the 3D neuron-glial interface induced by the mechano-electrical stimulation results in enhanced interactions among cellular components, leading to superior neural connectivity and functionality. These results demonstrate the potential of piezoelectric material-based technology for developing functional neural tissues in vitro via effective neural stem cell modulation with multi-faceted regenerative stimuli.

Keywords: mechano-electrical stimulation; neural stem cells; neuromodulation; piezoelectric nanofibers.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Differentiation
  • Electric Stimulation
  • Humans
  • Neural Stem Cells*
  • Neuroglia
  • Neurons