The mechanism of apoptosis of Chlamys farreri hemocytes under benzopyrene stress in vitro

Sci Total Environ. 2021 Nov 10:794:148731. doi: 10.1016/j.scitotenv.2021.148731. Epub 2021 Jun 28.

Abstract

Hemocytes are critical to the immune defense system of bivalves, and polycyclic aromatic hydrocarbons (PAHs) can mediate the immunity of bivalves by affecting the apoptosis of hemocytes. However, the underlying mechanism is still unclear. Chlamys farreri, as an important economic bivalve, was selected as the research subject for this experimentation. The hemocytes were exposed to typical PAHs-benzopyrene (B[a]P) in vitro to explore the apoptosis mechanism through detecting oxidative stress and oxidative damage-related indicators, apoptosis pathway factors, and apoptosis rate within 24 h. The results showed that the reactive oxygen species (ROS) and benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) content in hemocytes increased significantly under B[a]P exposure, while antioxidant genes, glutathione peroxidase content and total antioxidant capacity all showed a trend of first rising and subsequent falling. B[a]P also caused serious damage to DNA and lysosomal membrane stability. The proapoptotic factors genes in the mitochondrial apoptosis pathway were significantly up-regulated, and the anti-apoptotic gene Bcl-2 was significantly down-regulated. Besides, mitochondrial membrane potential stability was significantly reduced and caspase 9 enzyme activity was significantly improved with the B[a]P stimulation. The factors of death receptor pathway were also significantly up-regulated by B[a]P. Moreover, the expression levels of Mitogen-Activated Protein Kinases were also induced. The gene expression and enzyme activity of the caspase 3 and the apoptosis rate were significantly increased under B[a]P exposure. In conclusion, these results indicated that ROS was induced by B[a]P, and further triggered the oxidative stress and oxidative damage in hemocytes. B[a]P induced hemocyte apoptosis was mediated by both mitochondrial apoptosis pathway and death receptor apoptosis, and the activation of mitochondrial apoptosis pathway was affected by ROS. In addition, BPDE and MAPKs may play important roles in the B[a]P-mediated apoptosis pathway. This study deepens understanding of the apoptosis pathway and the immunotoxicity mechanism in bivalves hemocytes stimulated by persistent organic pollutants.

Keywords: Apoptosis pathway; B[a]P; Chlamys farreri; Hemocytes; ROS.

MeSH terms

  • Animals
  • Apoptosis
  • Benzo(a)pyrene / toxicity
  • Benzopyrenes
  • Hemocytes*
  • Pectinidae*

Substances

  • Benzopyrenes
  • Benzo(a)pyrene