Traction force microscopy by deep learning

Biophys J. 2021 Aug 3;120(15):3079-3090. doi: 10.1016/j.bpj.2021.06.011. Epub 2021 Jun 30.

Abstract

Cells interact mechanically with their surroundings by exerting and sensing forces. Traction force microscopy (TFM), purported to map cell-generated forces or stresses, represents an important tool that has powered the rapid advances in mechanobiology. However, to solve the ill-posed mathematical problem, conventional TFM involved compromises in accuracy and/or resolution. Here, we applied neural network-based deep learning as an alternative approach for TFM. We modified a neural network designed for image processing to predict the vector field of stress from displacements. Furthermore, we adapted a mathematical model for cell migration to generate large sets of simulated stresses and displacements for training and testing the neural network. We found that deep learning-based TFM yielded results that resemble those using conventional TFM but at a higher accuracy than several conventional implementations tested. In addition, a trained neural network is appliable to a wide range of conditions, including cell size, shape, substrate stiffness, and traction output. The performance of deep learning-based TFM makes it an appealing alternative to conventional methods for characterizing mechanical interactions between adherent cells and the environment.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Computer Simulation
  • Deep Learning*
  • Microscopy, Atomic Force
  • Models, Theoretical
  • Traction*