Effects of the Denitrification Inhibitor "Procyanidins" on the Diversity, Interactions, and Potential Functions of Rhizosphere-Associated Microbiome

Microorganisms. 2021 Jun 29;9(7):1406. doi: 10.3390/microorganisms9071406.

Abstract

Some plant secondary metabolites, such as procyanidins, have been demonstrated to cause biological denitrification inhibition (BDI) of denitrifiers in soils concomitantly with a gain in plant biomass. The present work evaluated whether procyanidins had an impact on the diversity of nontarget microbial communities that are probably involved in soil fertility and ecosystem services. Lettuce plants were grown in two contrasting soils, namely Manziat (a loamy sand soil) and Serail (a sandy clay loam soil) with and without procyanidin amendment. Microbial diversity was assessed using Illumina sequencing of prokaryotic 16S rRNA gene and fungal ITS regions. We used a functional inference to evaluate the putative microbial functions present in both soils and reconstructed the microbial interaction network. The results showed a segregation of soil microbiomes present in Serail and Manziat that were dependent on specific soil edaphic variables. For example, Deltaproteobacteria was related to total nitrogen content in Manziat, while Leotiomycetes and Firmicutes were linked to Ca2+ in Serail. Procyanidin amendment did not affect the diversity and putative activity of microbial communities. In contrast, microbial interactions differed according to procyanidin amendment, with the results showing an enrichment of Entotheonellaeota and Mucoromycota in Serail soil and of Dependentiae and Rozellomycetes in Manziat soil.

Keywords: denitrification inhibitor; diversity; functions; network; procyanidins; rhizosphere microbiome.