Prognostic Value of Circadian Rhythm of Brain Temperature in Traumatic Brain Injury

J Pers Med. 2021 Jun 30;11(7):620. doi: 10.3390/jpm11070620.

Abstract

Hypothermia has been used in postoperative management of traumatic brain injury (TBI); however, the rhythmic variation and prognostic value of brain temperature after TBI have never been studied. This study describes diurnal brain temperature patterns in comatose patients with TBI. Mesors of brain temperature, amplitude, and acrophase were estimated from recorded temperature measurements using cosinor analysis. The association of these patterns with clinical parameters, mortality, and functional outcomes in a 12-month follow-up was examined. According to the cosinor analysis, 59.3% of patients presented with circadian rhythms of brain temperature in the first 72 h postoperatively. The rhythm-adjusted mesor of brain temperature was 37.39 ± 1.21 °C, with a diminished mean amplitude of 0.28 (±0.25) °C; a shift of temperature acrophase was also observed. Multivariate logistic regression analysis revealed that initial Glasgow coma scale score, age, elevated blood glucose level, and circadian rhythm of brain temperature seemed to be predictive and prognostic factors of patients' functional outcomes. For the prediction of survival status, younger patients or those patients with mesor within the middle 50% of brain temperature were more likely to survive. The analysis of brain temperature rhythms in patients with moderate and severe TBI provided additional predictive information related to mortality and functional outcomes.

Keywords: circadian rhythm; hypothermia; organ temperature; postoperative care; prognosis; traumatic brain injury.