Assessing the Country-Level Excess All-Cause Mortality and the Impacts of Air Pollution and Human Activity during the COVID-19 Epidemic

Int J Environ Res Public Health. 2021 Jun 26;18(13):6883. doi: 10.3390/ijerph18136883.

Abstract

The impact of Coronavirus Disease 2019 (COVID-19) on cause-specific mortality has been investigated on a global scale. However, less is known about the excess all-cause mortality and air pollution-human activity responses. This study estimated the weekly excess all-cause mortality during COVID-19 and evaluated the impacts of air pollution and human activities on mortality variations during the 10th to 52nd weeks of 2020 among sixteen countries. A SARIMA model was adopted to estimate the mortality benchmark based on short-term mortality during 2015-2019 and calculate excess mortality. A quasi-likelihood Poisson-based GAM model was further applied for air pollution/human activity response evaluation, namely ground-level NO2 and PM2.5 and the visit frequencies of parks and workplaces. The findings showed that, compared with COVID-19 mortality (i.e., cause-specific mortality), excess all-cause mortality changed from -26.52% to 373.60% during the 10th to 52nd weeks across the sixteen countries examined, revealing higher excess all-cause mortality than COVID-19 mortality in most countries. For the impact of air pollution and human activities, the average country-level relative risk showed that one unit increase in weekly NO2, PM2.5, park visits and workplace visits was associated with approximately 1.54% increase and 0.19%, 0.23%, and 0.23% decrease in excess all-cause mortality, respectively. Moreover, compared with the impact on COVID-19 mortality, the relative risks of weekly NO2 and PM2.5 were lower, and the relative risks of weekly park and workplace visits were higher for excess all-cause mortality. These results suggest that the estimation based on excess all-cause mortality reduced the potential impact of air pollution and enhanced the influence of human activities compared with the estimation based on COVID-19 mortality.

Keywords: COVID-19 mortality; NO2; PM2.5; air pollution; excess mortality; human activities.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollutants* / toxicity
  • Air Pollution* / adverse effects
  • Air Pollution* / analysis
  • COVID-19*
  • Environmental Exposure / analysis
  • Epidemics*
  • Human Activities
  • Humans
  • Mortality
  • Particulate Matter / analysis
  • Particulate Matter / toxicity
  • SARS-CoV-2

Substances

  • Air Pollutants
  • Particulate Matter