Optical Wireless Link Operated at the Wavelength of 4.0 µm with Commercially Available Interband Cascade Laser

Sensors (Basel). 2021 Jun 15;21(12):4102. doi: 10.3390/s21124102.

Abstract

This paper evaluates the key factors influencing the design of optical wireless communication (OWC) systems operating in the mid-infrared range. The performed analysis has shown that working in this spectral "window", compared to other wavelengths, is more effective in reducing the attenuation of radiation. The main goal was to verify the capabilities of the "on-shelf" interband cascade (IC) laser in the context of OWC system construction, considering its output power, modulation rate, room temperature operation, and integrated structure. For this purpose, a lab model of a data link with IC laser has been developed. Based on its main parameters, the estimation of signal-to-noise power ratio versus data link range was made. That range was about 2 km for a case of low scintillation and relatively low visibility. In the experimental part of the work, the obtained modulation rate was 70 MHz for NRZ (non-return-to-zero) format coding. It is an outstanding result taking into consideration IC laser operated at room temperature.

Keywords: MWIR data link; free space optics; interband cascade lasers; optical link; optical wireless communication.