Effect of the Spatial Distribution of the Temperature and Humidity Index in a New Zealand White Rabbit House on Respiratory Frequency and Ear Surface Temperature

Animals (Basel). 2021 Jun 2;11(6):1657. doi: 10.3390/ani11061657.

Abstract

The objective of this study was to characterize and evaluate the temperature and humidity index (THI) of New Zealand white (NZW) rabbits kept in a rabbit house using geostatistical techniques. Furthermore, we sought to evaluate its relationship with respiratory frequency (RF) and ear surface temperature (EST). The experiment was conducted at the Federal University of Lavras, Brazil. A total of 52 NZW rabbits were used. For the characterization of the thermal environment, the dry bulb temperature (tdb, °C), relative humidity (RH, %), and dew point temperature (tdp, °C) were collected at 48 points in the rabbit house at 6:00 a.m., 12:00 p.m., and 6:00 p.m. for seven days. The RF and EST of the animals was monitored. Subsequently, the THI was calculated and the data were analyzed using geostatistical tools and kriging interpolation. In addition, the RF and EST data were superimposed on the rabbit house's THI data maps. The magnitude of the variability and structure of the THI inside the rabbit house were characterized and the heterogeneity was visualized. Critical THI points inside the rabbit house and in locations where animals with high RF and ESTs were housed were identified, thus providing information about improving the production environment.

Keywords: geostatistics; physiological responses; rabbit farming; thermal environment; thermal stress.