Enhancement of Luminescence Efficiency of Y2O3 Nanophosphor via Core/Shell Structure

Nanomaterials (Basel). 2021 Jun 14;11(6):1563. doi: 10.3390/nano11061563.

Abstract

We successfully fabricated Y2O3:RE3+ (RE = Eu, Tb, and Dy) core and core-shell nanophosphors by the molten salt method and sol-gel processes with Y2O3 core size of the order of 100~150 nm. The structural and morphological studies of the RE3+-doped Y2O3 nanophosphors are analyzed by using XRD, SEM and TEM techniques, respectively. The concentration and annealing temperature dependent structural and luminescence characteristics were studied for Y2O3:RE3+ core and core-shell nanophosphors. It is observed that the XRD peaks became narrower as annealing temperature increased in the core-shell nanophosphor. This indicates that annealing at higher temperature improves the crystallinity which in turn enhances the average crystallite size. The emission intensity and quantum yield of the Eu3+-doped Y2O3 core and core-shell nanoparticles increased significantly when annealing temperature is varied from 450 to 550 °C. No considerable variation was noticed in the case of Y2O3:Tb3+ and Y2O3:Dy3+ core and core-shell nanophosphors.

Keywords: RE ions; Y2O3 nanophosphor; core–shell structure; luminescence efficiency; quantum yield.