An Optimized Vector Tracking Architecture for Pseudo-Random Pulsing CDMA Signals

Sensors (Basel). 2021 Jun 14;21(12):4087. doi: 10.3390/s21124087.

Abstract

The vector tracking loop (VTL) has high tracking accuracy and a superior ability to track weak signals in GNSS. However, traditional VTL architecture is established on continuous Code Division Multiple Access (CDMA) signal and is incompatible with pseudolite positioning systems (PLPS) because PLPS generally adopts a pseudo-random pulsing CDMA signal structure to mitigate the near-far effect. Therefore, this paper proposes an optimized VTL architecture for pseudo-random pulsing CDMA signals. To avoid estimation biases in PLPS, the proposed VTL adopts irregular update periods (IUP) pre-filters which adjust the update cycles according to the active timeslot intervals. Meanwhile, as the active timeslots of different pseudolites do not overlap, the sampling time of the navigation filter inputs is inconsistent and time-varying, causing jitter degradation. Thus, the proposed VTL predicts the measurements so that they can be sampled at the same time, which improves tracking accuracy. Simulation is carried out to evaluate the performance of the proposed VTL. The results suggest that the proposed VTL outperforms the traditional pre-filter-based VTL and IUP pre-filter-based VTL.

Keywords: irregular update periods; predicted mesurement; pseudo-random pulsing signal; vector tracking loop.

MeSH terms

  • Computer Simulation*
  • Heart Rate
  • Physical Phenomena