Medium Entropy-Enabled High Performance Cubic GeTe Thermoelectrics

Adv Sci (Weinh). 2021 May 6;8(12):2100220. doi: 10.1002/advs.202100220. eCollection 2021 Jun.

Abstract

The configurational entropy is an emerging descriptor in the functional materials genome. In thermoelectric materials, the configurational entropy helps tune the delicate trade-off between carrier mobility and lattice thermal conductivity, as well as the structural phase transition, if any. Taking GeTe as an example, low-entropy GeTe generally have high carrier mobility and distinguished zT > 2, but the rhombohedral-cubic phase transition restricts the applications. In contrast, despite cubic structure and ultralow lattice thermal conductivity, the degraded carrier mobility leads to a low zT in high-entropy GeTe. Herein, medium-entropy alloying is implemented to suppress the phase transition and achieve the cubic GeTe with ultralow lattice thermal conductivity yet decent carrier mobility. In addition, co-alloying of (Mn, Pb, Sb, Cd) facilitates multivalence bands convergence and band flattening, thereby yielding good Seebeck coefficients and compensating for decreased carrier mobility. For the first time, a state-of-the-art zT of 2.1 at 873 K and average zT ave of 1.3 between 300 and 873 K are attained in cubic phased Ge0.63Mn0.15Pb0.1Sb0.06Cd0.06Te. Moreover, a record-high Vickers hardness of 270 is attained. These results not only promote GeTe materials for practical applications, but also present a breakthrough in the burgeoning field of entropy engineering.

Keywords: GeTe; band engineering; entropy engineering; phase transition; thermoelectric.