The use of air-lift adsorber with a floating filling from a cross-linked chitosan hydrogels for Reactive Black 5 removal

Sci Rep. 2021 Jun 28;11(1):13382. doi: 10.1038/s41598-021-92856-y.

Abstract

This work substantially extends knowledge on the possibilities of treating colored industrial wastewater via sorption under flow conditions. The presented study aimed to determine the effectiveness of Reactive Black 5 (RB5) dye sorption from aqueous solutions under dynamic (flow) conditions in an unconventional air-lift type loop reactor with a filling made of hydrogel chitosan sorbents. The dye was removed from mono-component solutions (deionized water + RB5) and synthetic dyeing wastewater containing RB5 dye, NaCl (3 g/L), and an anti-creasing agent-UNICREASE JET (2 g/L). The sorbents tested in the study included: unmodified chitosan (CHs), chitosan ionically cross-linked with sodium citrate (CHs-CIT), and chitosan covalently cross-linked with epichlorohydrin (CHs-ECH). Each experimental series aimed to determine: the bed break-through time (CE = 0.1 C0), time of depletion of the sorbent's sorption properties (CE = C0), and maximal sorption capacity of the sorbents (Qmax). The data obtained under dynamic conditions were described using Thomas, Yoon-Nelson, and Bohart-Adams models. The volume of the solution effectively treated in the air-lift reactor was significantly affected by chitosan sorbent type. At C0 = 50 mg RB5/L, the adsorber with the filling made of 1 g d.m. CHs allowed for the effective treatment of 4.6 L of synthetic wastewater (Qmax = 1504.7 mg/g), whereas CHs-ECH ensured 34.6 L of the treated solution (Qmax = 3212.9 mg/g).

Publication types

  • Research Support, Non-U.S. Gov't