Novel Cephalosporin Conjugates Display Potent and Selective Inhibition of Imipenemase-Type Metallo-β-Lactamases

J Med Chem. 2021 Jul 8;64(13):9141-9151. doi: 10.1021/acs.jmedchem.1c00362. Epub 2021 Jun 28.

Abstract

In an attempt to exploit the hydrolytic mechanism by which β-lactamases degrade cephalosporins, we designed and synthesized a series of novel cephalosporin prodrugs aimed at delivering thiol-based inhibitors of metallo-β-lactamases (MBLs) in a spatiotemporally controlled fashion. While enzymatic hydrolysis of the β-lactam ring was observed, it was not accompanied by inhibitor release. Nonetheless, the cephalosporin prodrugs, especially thiomandelic acid conjugate (8), demonstrated potent inhibition of IMP-type MBLs. In addition, conjugate 8 was also found to greatly reduce the minimum inhibitory concentration of meropenem against IMP-producing bacteria. The results of kinetic experiments indicate that these prodrugs inhibit IMP-type MBLs by acting as slowly turned-over substrates. Structure-activity relationship studies revealed that both phenyl and carboxyl moieties of 8 are crucial for its potency. Furthermore, modeling studies indicate that productive interactions of the thiomandelic acid moiety of 8 with Trp28 within the IMP active site may contribute to its potency and selectivity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemical synthesis
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Cephalosporins / chemical synthesis
  • Cephalosporins / chemistry
  • Cephalosporins / pharmacology*
  • Dose-Response Relationship, Drug
  • Molecular Structure
  • Structure-Activity Relationship
  • beta-Lactamase Inhibitors / chemical synthesis
  • beta-Lactamase Inhibitors / chemistry
  • beta-Lactamase Inhibitors / pharmacology*
  • beta-Lactamases / metabolism*

Substances

  • Anti-Bacterial Agents
  • Cephalosporins
  • beta-Lactamase Inhibitors
  • beta-Lactamases