Characterization of a Novel Human Organotypic Retinal Culture Technique

J Vis Exp. 2021 Jun 9:(172). doi: 10.3791/62046.

Abstract

Previous human organotypic retinal culture (HORC) models have utilized detached retinas; however, without the structural support conferred by retinal pigment epithelium-choroid (RPE-choroid) and sclera, the integrity of the fragile retina can easily be compromised. The aim of this study was to develop a novel HORC model that contains the retina, RPE-choroid and sclera to maintain retinal integrity when culturing retinal explants. After cutting circumferentially along the limbus to remove iris and lens, four deep incisions were made to flatten the eyecup. In contrast to previous HORC protocols, a trephine was used to cut through not only the retina but also the RPE-choroid and sclera. The resultant triple-layered explants were cultured for 72 h. Hematoxylin and Eosin staining (H&E) was used to assess anatomical structures and retinal explants were further characterized by immunohistochemistry (IHC) for apoptosis, Müller cell integrity and retinal inflammation. To confirm the possibility of disease induction, explants were exposed to high glucose (HG) and pro-inflammatory cytokines (Cyt), to mimic diabetic retinopathy (DR). The Luminex magnetic bead assay was used to measure DR-related cytokines released into the culture medium. H&E staining revealed distinct retinal lamellae and compact nuclei in retinal explants with the underlying RPE-choroid and sclera, while retinas without the underlying structures exhibited reduced thickness and severe nuclei loss. IHC results indicated absence of apoptosis and retinal inflammation as well as preserved Müller cell integrity. The Luminex assays showed significantly increased secretion of DR-associated pro-inflammatory cytokines in retinal explants exposed to HG + Cyt relative to baseline levels at 24 h. We successfully developed and characterized a novel HORC protocol in which retinal integrity was preserved without apoptosis or retinal inflammation. Moreover, the induced secretion of DR-associated pro-inflammatory biomarkers when exposing retinal explants to HG + Cyt suggests that this model could be used for clinically translatable retinal disease studies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Choroid
  • Culture Techniques
  • Diabetic Retinopathy*
  • Humans
  • Retina*
  • Retinal Pigment Epithelium