3-Arylamino-quinoxaline-2-carboxamides inhibit the PI3K/Akt/mTOR signaling pathways to activate P53 and induce apoptosis

Bioorg Chem. 2021 Sep:114:105101. doi: 10.1016/j.bioorg.2021.105101. Epub 2021 Jun 19.

Abstract

Thirty-eight new 3-arylaminoquinoxaline-2-carboxamide derivatives were in silico designed, synthesized and their cytotoxicity against five human cancer cell lines and one normal cells WI-38 were evaluated. Molecular mechanism studies indicated that N-(3-Aminopropyl)-3-(4-chlorophenyl) amino-quinoxaline-2-carboxamide (6be), the compound with the most potent anti-proliferation can inhibit the PI3K-Akt-mTOR pathway via down regulating the levels of PI3K, Akt, p-Akt, p-mTOR and simultaneously inhibit the phosphorylation of Thr308 and Ser473 residues in Akt kinase to servers as a dual inhibitor. Further investigation revealed that 6be activate the P53 signal pathway, modulated the downstream target gene of Akt kinase such p21, p27, Bax and Bcl-2, caused the fluctuation of intracellular ROS, Ca2+ and mitochondrial membrane potential to induce cell cycle arrest and apoptosis in MGC-803 cells. 6be also display moderate anti-tumor activity in vivo while displaying no obvious adverse signs during the drug administration. The results suggest that 3-arylaminoquinoxaline-2-carboxamide derivatives might server as new scaffold for development of PI3K-Akt-mTOR inhibitor.

Keywords: Akt; Antitumor activity; P53 activation; PI3K; Quinoxaline derivatives; mTOR signaling pathway inhibitor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology*
  • Humans
  • Molecular Structure
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Quinoxalines / chemical synthesis
  • Quinoxalines / chemistry
  • Quinoxalines / pharmacology*
  • Signal Transduction / drug effects
  • Structure-Activity Relationship
  • TOR Serine-Threonine Kinases / antagonists & inhibitors*
  • TOR Serine-Threonine Kinases / metabolism
  • Tumor Suppressor Protein p53 / metabolism*

Substances

  • Antineoplastic Agents
  • Enzyme Inhibitors
  • Quinoxalines
  • Tumor Suppressor Protein p53
  • MTOR protein, human
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases