SARM1 signaling mechanisms in the injured nervous system

Curr Opin Neurobiol. 2021 Aug:69:247-255. doi: 10.1016/j.conb.2021.05.004. Epub 2021 Jun 25.

Abstract

Axon degeneration is a prominent feature of the injured nervous system, occurs across neurological diseases, and drives functional loss in neural circuits. We have seen a paradigm shift in the last decade with the realization that injured axons are capable of actively driving their own destruction through the sterile-alpha and TIR motif containing 1 (SARM1) protein. Early studies of Wallerian degeneration highlighted a central role for NAD+ metabolites in axon survival, and this association has grown even stronger in recent years with a deeper understanding of SARM1 biology. Here, we review our current knowledge of SARM1 function in vivo and our evolving understanding of its complex architecture and regulation by injury-dependent changes in the local metabolic environment. The field is converging on a model whereby SARM1 acts as a sensor for metabolic changes that occur after injury and then drives catastrophic NAD+ loss to promote degeneration. However, a number of observations suggest that SARM1 biology is more complicated, and there remains much to learn about how SARM1 governs nervous system responses to injury or disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Armadillo Domain Proteins* / genetics
  • Axons / pathology
  • Cytoskeletal Proteins* / genetics
  • Mice
  • Mice, Knockout
  • Wallerian Degeneration

Substances

  • Armadillo Domain Proteins
  • Cytoskeletal Proteins
  • SARM1 protein, mouse