A Polymer-in-Salt Electrolyte with Enhanced Oxidative Stability for Lithium Metal Polymer Batteries

ACS Appl Mater Interfaces. 2021 Jul 14;13(27):31583-31593. doi: 10.1021/acsami.1c04637. Epub 2021 Jun 25.

Abstract

The lithium (Li) metal polymer battery (LMPB) is a promising candidate for solid-state batteries with high safety. However, high voltage stability of such a battery has been hindered by the use of polyethylene oxide (PEO), which oxidizes at a potential lower than 4 V versus Li. Herein, we adopt the polymer-in-salt electrolyte (PISE) strategy to circumvent the disadvantage of the PEO-lithium bis(fluorosulfonyl)imide (LiFSI) system with EO/Li ≤ 8 through a dry ball-milling process to avoid the contamination of the residual solvent. The obtained solid-state PISEs exhibit distinctly different morphologies and coordination structures which lead to significant improvement in oxidative stability. P(EO)1LiFSI has a low melting temperature, a high ionic conductivity at 60 °C, and an oxidative stability of ∼4.5 V versus Li/Li+. With an effective interphase rich in inorganic species and a good stability of the hybrid polymer electrolyte toward Li metal, the LMPB constructed with Li||LiNi1/3Co1/3Mn1/3O2 can retain 74.4% of capacity after 186 cycles at 60 °C under the cutoff charge voltage of 4.3 V. The findings offer a promising pathway toward high-voltage stable polymer electrolytes for high-energy-density and safe LMPBs.

Keywords: high voltage stability; lithium metal anode; lithium metal battery; polyethylene oxide electrolyte; polymer-in-salt electrolyte.