Identifying the Dominant Role of Pyridinic-N-Mo Bonding in Synergistic Electrocatalysis for Ambient Nitrogen Reduction

ACS Nano. 2021 Jul 27;15(7):12109-12118. doi: 10.1021/acsnano.1c03465. Epub 2021 Jun 21.

Abstract

For electrochemical nitrogen reduction reaction (NRR), hybridizing transition metal (TM) compounds with nitrogen-doped carbonaceous materials has been recognized as a promising strategy to improve the activity and stability of electrocatalysts due to the synergistic interaction from the TM-N-C active sites. Nevertheless, up to date, the fundamental mechanism of this so-called synergistic electrocatalysis for NRR is still unclear. Particularly, it remains ambiguous which configuration of N dopants, either pyridinic N or pyrrolic N, when coordinated with the TM, predominately contributes to this synergy. Herein, a self-assembled three-dimensional 1T-phase MoS2 microsphere coupled with N-doped carbon was developed (termed MoS2/NC), showing an impressive NRR performance in neutral medium. The hybridization of MoS2 and N-doped carbon can synergistically enhance the NRR efficiency by optimizing the electron transfer of catalyst. Acidification/blocking/poisoning experiments reveal the decisive role of pyridinic-N-Mo bonding, rather than pyrrolic-N-Mo bonding, in synergistically enhancing NRR electrocatalysis. The electrochemical-based in situ Fourier transform infrared spectroscopy (in situ FTIR) technology provides deep insights into the substantial contribution of pyridinic-N-MoS2 sites to NRR electrocatalysis and further uncover the underlying mechanism (associative pathway) at a molecular level.

Keywords: Mo−N−C active sites; electrochemical nitrogen reduction reaction; in situ FTIR; nitrogen configuration; synergistic effect.