Engineered nanophotonic waveguide with ultra-low dispersion

Appl Opt. 2021 Jun 1;60(16):4732-4737. doi: 10.1364/AO.428534.

Abstract

A silicon-based engineered hybrid plasmonic waveguide with ultra-low dispersion is proposed. The ridge-shaped structure of the nanophotonic waveguide enables nano-scale confinement with electrically tunable characteristics using the plasma dispersion effect in silicon. The waveguide exhibits ultra-low dispersion of $1.28\;{{\rm ps}^2}/{\rm m}$ at telecommunication wavelength (1550 nm) in C band together with dual flatband dispersion over a wavelength range of 370 nm. The hybrid plasmonic mode is made to be confined in 15 nm thick ${{\rm SiO}_2}$ with a propagation loss of 15.3 dB/mm utilizing the engineered ridge structure comprising Si, ${{\rm SiO}_2}$, and gold. In addition, the proposed waveguide shows six zero-dispersion wavelengths. The imaginary and real parts of the effective refractive index of the guided hybrid plasmonic mode are reported to be tunable with the applied voltage. The reported numerical results can pave the way for achieving intensity modulators and other electrically tunable devices at telecommunication wavelengths. The ultra-low dispersion and electrical tuning make this nanophotonic waveguide an absolute contender for applications including efficient nonlinear signal processing such as wide wavelength conversion based on four-wave mixing, supercontinuum generation, and other nanoscale integrated photonic devices.