Designing optimal integrated electricity supply configurations for renewable hydrogen generation in Australia

iScience. 2021 May 15;24(6):102539. doi: 10.1016/j.isci.2021.102539. eCollection 2021 Jun 25.

Abstract

The high variability and intermittency of wind and solar farms raise questions of how to operate electrolyzers reliably, economically, and sustainably using predominantly or exclusively variable renewables. To address these questions, we develop a comprehensive cost framework that extends to include factors such as performance degradation, efficiency, financing rates, and indirect costs to assess the economics of 10 MW scale alkaline and proton-exchange membrane electrolyzers to generate hydrogen. Our scenario analysis explores a range of operational configurations, considering (i) current and projected wholesale electricity market data from the Australian National Electricity Market, (ii) existing solar/wind farm generation curves, and (iii) electrolyzer capital costs/performance to determine costs of H2 production in the near (2020-2040) and long term (2030-2050). Furthermore, we analyze dedicated off-grid integrated electrolyzer plants as an alternate operating scenario, suggesting oversizing renewable nameplate capacity with respect to the electrolyzer to enhance operational capacity factors and achieving more economical electrolyzer operation.

Keywords: Electrochemistry; energy engineering; energy flexibility; energy policy; energy sustainability; energy systems.