An Antigen-Delivery Protein Nanoparticle Combined with Anti-PD-1 Checkpoint Inhibitor Has Curative Efficacy in an Aggressive Melanoma Model

Adv Ther (Weinh). 2020 Dec;3(12):2000122. doi: 10.1002/adtp.202000122. Epub 2020 Oct 1.

Abstract

Immune checkpoint inhibition is a promising alternative treatment to standard chemotherapies; however, it fails to achieve long-term remission in a significant portion of patients. A previously developed protein nanoparticle-based platform (E2 nanoparticle) delivers cancer antigens to increase antigen-specific tumor responses. While prior work has focussed on prophylactic conditions, the objectives in this study are therapeutic. It is hypothesized that immune checkpoint inhibition, when augmented by antigen delivery using E2 nanoparticles containing CpG oligonucleotide 1826 (CpG) and a glycoprotein 100 (gp100) melanoma antigen epitope (CpG-gp-E2), would synergistically elicit antitumor responses. To identify a regimen primed for obtaining effective treatment results, immune benchmarks in the spleen and tumor are examined. Conditions that lead to significant immune activation, including increases in gp100-specific interferon gamma (IFN-𝜸), CD8 T cells in the spleen, tumor-infiltrating CD8 T cells, and survival time are identified. Based on the findings, the resulting combination of CpG-gp-E2 and anti-programmed cell death protein 1 (anti-PD-1) treatment in tumor-challenged mice yield significantly increased long-term survival; more than 50% of the mice treated with combination therapy were tumor-free, compared with 0% and ≈5% for CpG-gp-E2 and anti-PD-1 alone, respectively. Evidence of a durable antitumor response is also observed upon tumor rechallenge, pointing to long-lasting immune memory.

Keywords: cancer vaccines; checkpoint inhibitors; combination therapies; nanoparticles.