The effects of four decades of climate change on the breeding ecology of an avian sentinel species across a 1,500-km latitudinal gradient are stronger at high latitudes

Ecol Evol. 2021 Mar 18;11(11):6233-6247. doi: 10.1002/ece3.7459. eCollection 2021 Jun.

Abstract

Global warming affects breeding phenology of birds differentially with latitude, but there is contrasting evidence about how the changing climate influences the breeding of migrating songbirds at their northern breeding range. We investigate the effect of climate warming on breeding time and breeding success of European pied flycatchers Ficedula hypoleuca in Sweden during a period of 36 years using nest reports from bird ringing. To account for the latitudinal variation, we divided Sweden into three latitudinal bands (northern, intermediate, and southern). We applied a sliding window approach to find the most influential period and environment characteristics (temperature, vegetation greenness, and precipitation), using linear mixed models and model averaging. Our results show a long-term advancement of breeding time related to increasing spring temperature and vegetation greenness during a period before hatching. Northern breeders revealed a larger advancement over the years (8.3 days) compared with southern breeders (3.6 days). We observed a relatively stronger effect of temperature and greenness on breeding time in the north. Furthermore, northern birds showed an increase in breeding success over time, while birds breeding at southern and intermediate latitudes showed reduced breeding success in years with higher prehatching temperatures. Our findings with stronger environment effects on breeding time advancement in the north suggest that pied flycatchers are more responsive to weather cues at higher latitudes. Breeding time adjustment and, potentially, low competition help explain the higher long-term success observed in the north. Reduced breeding success at more southerly latitudes suggests an inability to match breeding time to very early and warm springs, a fate that with continued climate change could also be expected for pied flycatchers and other long-distance migrants at their very northern breeding range.

Keywords: adaptation; breeding phenology; latitudinal variation; pied flycatcher; reproductive success; spring advancement.

Associated data

  • Dryad/10.5061/dryad.v9s4mw6v4