PHYTOCHROME-INTERACTING FACTORs trigger environmentally responsive chromatin dynamics in plants

Nat Genet. 2021 Jul;53(7):955-961. doi: 10.1038/s41588-021-00882-3. Epub 2021 Jun 17.

Abstract

The interplay between light receptors and PHYTOCHROME-INTERACTING FACTORs (PIFs) serves as a regulatory hub that perceives and integrates environmental cues into transcriptional networks of plants1,2. Although occupancy of the histone variant H2A.Z and acetylation of histone H3 have emerged as regulators of environmentally responsive gene networks, how these epigenomic features interface with PIF activity is poorly understood3-7. By taking advantage of rapid and reversible light-mediated manipulation of PIF7 subnuclear localization and phosphorylation, we simultaneously assayed the DNA-binding properties of PIF7, as well as its impact on chromatin dynamics genome wide. We found that PIFs act rapidly to reshape the H2A.Z and H3K9ac epigenetic landscape in response to a change in light quality. Furthermore, we discovered that PIFs achieve H2A.Z removal through direct interaction with EIN6 ENHANCER (EEN), the Arabidopsis thaliana homolog of the chromatin remodeling complex subunit INO80 Subunit 6 (Ies6). Thus, we describe a PIF-INO80 regulatory module that is an intermediate step for allowing plants to change their growth trajectory in response to environmental changes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Basic Helix-Loop-Helix Transcription Factors / metabolism*
  • Chromatin / genetics*
  • Chromatin / metabolism*
  • Environment*
  • Epigenesis, Genetic
  • Gene Expression Regulation, Plant*
  • Gene-Environment Interaction*
  • Genetic Variation
  • Histones / genetics
  • Histones / metabolism
  • Protein Processing, Post-Translational

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • Chromatin
  • Histones