A visible-light activated [2 + 2] cycloaddition reaction enables pinpointing carbon-carbon double bonds in lipids

Chem Sci. 2020 Jun 22;11(27):7244-7251. doi: 10.1039/d0sc01149e.

Abstract

The precise location of C[double bond, length as m-dash]C bonds in bioactive molecules is critical for a deep understanding of the relationship between their structures and biological roles. However, the traditional ultraviolet light-based approaches exhibited great limitations. Here, we discovered a new type of visible-light activated [2 + 2] cycloaddition of carbonyl with C[double bond, length as m-dash]C bonds. We found that carbonyl in anthraquinone showed great reactivities towards C[double bond, length as m-dash]C bonds in lipids to form oxetanes under the irradiation of visible-light. Combined with tandem mass spectrometry, this site-specific dissociation of oxetane enabled precisely locating the C[double bond, length as m-dash]C bonds in various kinds of monounsaturated and polyunsaturated lipids. The proof-of-concept applicability of this new type of [2 + 2] photocycloaddition was validated in the global identification of unsaturated lipids in a complex human serum sample. 86 monounsaturated and polyunsaturated lipids were identified with definitive positions of C[double bond, length as m-dash]C bonds, including phospholipids and fatty acids even with up to 6 C[double bond, length as m-dash]C bonds. This study provides new insights into both the photocycloaddition reactions and the structural lipidomics.