Sex-specific differences in Juniperus communis: essential oil yield, growth-defence conflict and population sex ratio

AoB Plants. 2021 Apr 22;13(3):plab021. doi: 10.1093/aobpla/plab021. eCollection 2021 Jun.

Abstract

In plants, biomass and nutrient allocation often generate trade-offs between the different biochemical pathways conflicting the utilization of the common source among growth, reproduction and chemical defence. However, in dioecious plant species, these trade-off patterns could appear as a more contrasted problem between males and females due to the dissimilar reproduction investment. Generally, the growth ratio is higher in males than females, while females have a stronger defence than males. To understand the possible role of the sex-specific dissimilarities within the growth-defence conflict framework, we investigated the possible causes of the high variance of the essential oil yield in a dioecious evergreen species, Juniperus communis. Specifically, we tested the correlations between the essential oil yield with other individual-specific traits (e.g. sex, age), the presence of the growth-defence trade-off, and the differential growth and survival patterns between males and females through an extensive field survey with sample collection in three natural populations (Kiskunság National Park, Hungary). The individual-specific essential oil yield was also measured and served as a proxy to describe the degree of chemical defence. We found that the essential oil yield showed strong and consistent sex-specific patterns decreasing with age in adults. Contrary to the predictions, the males showed a consistently higher yield than the females. We also observed a growth-defence trade-off in males but not in females. Consistently with the growth-defence conflict hypothesis, the populations' sex ratio was male-biased, and this pattern was more evident with ageing modifying the demographic structure due to the sexually dissimilar lifespan. Our juniper study revealed a contrasting and unique essential oil accumulation driven by the complex allocation trade-off mechanisms within individuals, which could be a flexible and adaptive defence response against the increasing biotic and abiotic environmental stresses exacerbated under global climate change.

Keywords: Chemical defence; dioecy; plant secondary metabolites; resource acquisition; sexual dimorphism; terpenes.