Wells-Dawson Arsenotungstate Porous Derivatives for Electrochemical Supercapacitor Electrodes and Electrocatalytically Active Materials

Inorg Chem. 2021 Jul 5;60(13):9869-9879. doi: 10.1021/acs.inorgchem.1c01136. Epub 2021 Jun 14.

Abstract

Two Wells-Dawson arsenotungstate coordination polymers, [{CuII(bim)2}3(As2W18O62)] (1) and [(CuI10pz10Cl4)(As2W18O62)] (bim = 2,2'-biimidazole; pz = pyrazine), have been assembled via a hydrothermal method and fully characterized. Compound 1 exhibits a 2,6-connected two-dimensional hybrid layer based on asymmetrically modified {As2W18} anions and {Cu(bim)2} linkers, which is extended to a three-dimensional network with a special interlayer structure and a one-dimensional tunnel. Compound 2 is a host-guest framework that consists of a Cu-pz-Cl network with 20-member square rings, 16-member irregular rings, and embedded eight-node {As2W18} guest molecules. Compounds 1 and 2 show uncommon specific capacitance (834.8 and 960.1 F g-1, respectively, at a current density of 2.4 A g-1), enduring cycling stability (capacitance retention rates of 89.3% and 91.9%, respectively, after 5000 cycles), and good electrical conductivity, which are superior to those of the unmodified zero-dimensional Dawson arsenotungstate compound and most reported electrode materials in terms of their stable structure, special layer spacing, and orderly channels. Moreover, the title compounds exhibit excellent electrocatalytic activity for oxidizing ascorbic acid and reducing nitrite.