Soil amendments from recycled waste differently affect CO₂ soil emissions in restored mining soils under semiarid conditions

J Environ Manage. 2021 Sep 15:294:112894. doi: 10.1016/j.jenvman.2021.112894. Epub 2021 Jun 10.

Abstract

Drylands affected by serious disturbances such as mining activities lose their vegetation cover and organic soil horizons, becoming CO2 emissions sources. Applications of organic amendments could be a good restoration solution that favours vegetation establishment and soil carbon sequestration; however, they are also associated with CO₂ emissions. Experimental plots with different organic amendments (sewage sludge, garden and greenhouse vegetable composts, and mixtures of both) and unamended soils were installed in a quarry in southeast Spain. The aim of this study was: i) to evaluate the magnitude and changes of in situ CO₂ emission from each experimental plot during a year and a half, and ii) to assess the effects of several physical-chemical (total organic carbon, total nitrogen, water retention, pH and electrical conductivity) and environmental parameters (moisture and temperature) in CO2 emissions. The results showed an initial CO2 emission (priming effect), produced from all restored plots just after the application of the organic amendment, which was significantly higher (P < 0.05) in soils with sewage sludge and their mixtures in comparison to vegetable compost. Garden compost had low emission rates, similar to soils without amendment and showed lower CO2 emission rates than the rest of the restoration treatments. Nevertheless, CO2 emissions decreased in each field campaign over time, showing that all restored soils had lower emissions than natural soils at the end of the sampled period. The different composition of organic amendments had a different effect on soil CO2 emissions. DistLM analysis showed that soil properties such as total organic carbon, total nitrogen, pH and soil moisture, associated with rainfall periods, strongly influenced CO₂ emissions, whereas temperature did not affect the CO2 flow. In conclusion, the compost from plant remains could serve better as treatment to restore degraded soils in drylands than sewage sludge because of its lower CO2 emissions and concomitant effect on climate warming and carbon balance.

Keywords: Organic amendments; Priming effect; Recycled waste; Restored soil; Soil CO₂ emissions; Soil respiration.

MeSH terms

  • Carbon Dioxide / analysis
  • Mining
  • Soil Pollutants* / analysis
  • Soil*
  • Spain

Substances

  • Soil
  • Soil Pollutants
  • Carbon Dioxide