Impact of time and phosphorus application rate on phosphorus bioavailability and efficiency of secondary fertilizers recovered from municipal wastewater

Chemosphere. 2021 Nov:282:131017. doi: 10.1016/j.chemosphere.2021.131017. Epub 2021 May 28.

Abstract

Demand for phosphorus (P) resources other than non-renewable P rock has driven the development of several P recovery technologies from municipal wastewater treatment and directed recovery of P into valuable fertilizers (struvite, ash, iron phosphate, etc.). Although the bioavailability of novel secondary P fertilizers has been examined in previous studies, insufficient attention has been paid to defining optimal plant growth duration and monitoring conditions to assess the dynamic changes in P. Accordingly, five fertilizers recovered from municipal wastewater: two struvites (STRSL and STRLQ), two ashes (ASH1 and ASH2), and iron-phosphate pelletized sludge (FeP) using triple superphosphate (TSP) as a positive control and blank (zero P) as a negative control, were applied to P poor-sand at three P doses (equivalent to 30, 60, and 90 kg P2O5 ha-1). Fertilizer impact on perennial ryegrass (Lolium perenne) dry matter (DM) and P concentration were evaluated on a monthly basis for seven months. DM and relative agronomical efficiency (RAE) have shown the same trend between the fertilizers, but only at the lowest P dose (corresponding to 30 kg P2O5 ha-1). At higher P doses (60, and 90 kg P2O5 ha-1) the differences in DM and RAE among the fertilizers diminished. STRLQ, STRSL, ASH1 and FeP expressed a rather steady P release pattern, while ASH2 had a delay of four cuts and increase afterward. Monitoring the P uptake during four months of perennial ryegrass growth turned out to be the minimum, and seven months the optimum period for reaching the full capacity of the slow-release P fertilizers.

Keywords: Iron phosphate; Phosphorus availability; Phosphorus recovery; Sewage sludge ash; Struvite.

MeSH terms

  • Biological Availability
  • Fertilizers*
  • Phosphorus*
  • Sewage
  • Wastewater

Substances

  • Fertilizers
  • Sewage
  • Waste Water
  • Phosphorus