Cancer cell migration in collagen-hyaluronan composite extracellular matrices

Acta Biomater. 2021 Aug:130:183-198. doi: 10.1016/j.actbio.2021.06.009. Epub 2021 Jun 8.

Abstract

Hyaluronan (HA) is a key component in the tumor microenvironment (TME) that participates in cancer growth and invasiveness. While the molecular weight (MW) dependent properties of HA can cause tumor-promoting and -repressing effects, the elevated levels of HA in the TME impedes drug delivery. The degradation of HA using hyaluronidases (HYALs), resulting in fragments of HA, is a way to overcome this, but the consequences of changes in HA molecular weight and concentration is currently unknown. Therefore, it is critical to understand the MW-dependent biological effects of HA. Here we examine the influence of HA molecular weight on biophysical properties that regulate cell migration and extracellular matrix (ECM) remodeling. In our study, we used vLMW, LMW and HMW HA at different physiologically relevant concentrations, with a particular interest in correlating the mechanical and structural properties to different cell functions. The elastic modulus, collagen network pore size and collagen fiber diameter increased with increasing HA concentration. Although the collagen network pore size increased, these pores were filled with the bulky HA molecules. Consequently, cell migration decreased with increase in HA concentration due to multiple, long-lived and unproductive protrusions, suggesting the influence of steric factors. Surprisingly, even though elastic modulus increased with HA molecular weight and concentration, gel compaction assays showed an increased degree of ECM compaction among HMW HA gels at high concentrations (2 and 4 mg mL-1 [0.2 and 0.4%]). These results were not seen in collagen gels that lacked HA, but had similar stiffness. HA appears to have the effect of decreasing migration and increasing collagen network contraction, but only at high HA molecular weight. Consequently, changes in HA molecular weight can have relatively large effects on cancer cell behavior. STATEMENT OF SIGNIFICANCE: Hyaluronan (HA) is a critical component of the tumor microenvironment (TME). Overproduction of HA in the TME results in poor prognosis and collapse of blood vessels, inhibiting drug delivery. Hyaluronidases have been used to enhance drug delivery. However, they lead to low molecular weight (MW) HA, altering the mechanical and structural properties of the TME and cancer cell behavior. Understanding how HA degradation affects cancer cell behavior is critical for uncovering detrimental effects of this therapy. Very little is known about how HA MW affects cancer cell behavior in tumor-mimicking collagen-HA composite networks. Here we examine how MW and HA content in collagen-HA networks alter structural and mechanical properties to regulate cell migration and matrix remodeling in 3D TME-mimicking environments.

Keywords: Compaction; Glycation; Hyaluronate; Hyaluronic acid; MDA-MB-231; Stiffness; Stress relaxation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Movement
  • Collagen
  • Extracellular Matrix
  • Humans
  • Hyaluronic Acid*
  • Neoplasms*
  • Tumor Microenvironment

Substances

  • Hyaluronic Acid
  • Collagen