Intrinsic 5-lipoxygenase activity regulates migration and adherence of mantle cell lymphoma cells

Prostaglandins Other Lipid Mediat. 2021 Oct:156:106575. doi: 10.1016/j.prostaglandins.2021.106575. Epub 2021 Jun 8.

Abstract

Human B-lymphocytes express 5-lipoxygenase (5-LOX) and 5-LOX activating protein (FLAP) and can convert arachidonic acid to leukotriene B4. Mantle cell lymphoma (MCL) cells contain similar amounts of 5-LOX as human neutrophils but the function and mechanism of activation of 5-LOX in MCL cells, and in normal B-lymphocytes, are unclear. Here we show that the intrinsic 5-LOX pathway in the MCL cell line JeKo-1 has an essential role in migration and adherence of the cells, which are important pathophysiological characteristics of B-cell lymphoma. Incubation of JeKo-1 with the FLAP inhibitor GSK2190915 or the 5-LOX inhibitor zileuton, at a concentration below 1 μM, prior to stimulation with the chemotactic agent CXCL12, led to a significant reduction of migration. CRISPR/Cas9 mediated deletion of ALOX5 gene in JeKo-1 cells also led to a significantly decreased migration of the cells. Furthermore, 5-LOX and FLAP inhibitors markedly decreased the adherence of JeKo-1 cells to stromal cells. In comparison, these drugs had a similar effect on adherence of JeKo-1 cells as the Bruton tyrosine kinase inhibitor ibrutinib, which has a proven anti-tumour effect. These results indicate that inhibition of 5-LOX may be a novel treatment for MCL and certain other B-cell lymphomas.

Keywords: 5-lipoxygenase; Arachidonic acid; Ibrutinib; Leukotriene; Mantle cell lymphoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Lymphoma, Mantle-Cell*