Inactivation of common airborne antigens by perfluoroalkyl chemicals modulates early life allergic asthma

Proc Natl Acad Sci U S A. 2021 Jun 15;118(24):e2011957118. doi: 10.1073/pnas.2011957118.

Abstract

Allergic asthma, driven by T helper 2 cell-mediated immune responses to common environmental antigens, remains the most common respiratory disease in children. Perfluorinated chemicals (PFCs) are environmental contaminants of great concern, because of their wide application, persistence in the environment, and bioaccumulation. PFCs associate with immunological disorders including asthma and attenuate immune responses to vaccines. The influence of PFCs on the immunological response to allergens during childhood is unknown. We report here that a major PFC, perfluorooctane sulfonate (PFOS), inactivates house dust mite (HDM) to dampen 5-wk-old, early weaned mice from developing HDM-induced allergic asthma. PFOS further attenuates the asthma protective effect of the microbial product lipopolysaccharide (LPS). We demonstrate that PFOS prevents desensitization of lung epithelia by LPS, thus abolishing the latter's protective effect. A close mechanistic study reveals that PFOS specifically binds the major HDM allergen Der p1 with high affinity as well as the lipid A moiety of LPS, leading to the inactivation of both antigens. Moreover, PFOS at physiological human (nanomolar) concentrations inactivates Der p1 from HDM and LPS in vitro, although higher doses did not cause further inactivation because of possible formation of PFOS aggregates. This PFOS-induced neutralization of LPS has been further validated in primary human cell models and extended to an in vivo bacterial infection mouse model. This study demonstrates that early life exposure of mice to a PFC blunts airway antigen bioactivity to modulate pulmonary inflammatory responses, which may adversely affect early pulmonary health.

Keywords: early life exposure; house dust mites; lipopolysaccharide; perfluorinated chemicals; pulmonary immunomodulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkanesulfonic Acids / chemistry
  • Alkanesulfonic Acids / pharmacology*
  • Animals
  • Antigens, Dermatophagoides / chemistry
  • Antigens, Dermatophagoides / immunology*
  • Asthma / complications
  • Asthma / genetics
  • Asthma / immunology*
  • Asthma / parasitology*
  • Dendritic Cells / immunology
  • Escherichia coli
  • Female
  • Fluorocarbons / chemistry
  • Fluorocarbons / pharmacology*
  • Gene Expression Profiling
  • Hypersensitivity / complications
  • Hypersensitivity / genetics
  • Hypersensitivity / immunology*
  • Hypersensitivity / parasitology*
  • Immunomodulation / drug effects
  • Immunomodulation / genetics
  • Lipopolysaccharides
  • Lung / immunology
  • Lung / microbiology
  • Lung / parasitology
  • Lung / pathology
  • Mice
  • Mice, Inbred BALB C
  • Models, Molecular
  • Pseudomonas aeruginosa / physiology
  • Pyroglyphidae / physiology

Substances

  • Alkanesulfonic Acids
  • Antigens, Dermatophagoides
  • Fluorocarbons
  • Lipopolysaccharides
  • perfluorooctane sulfonic acid