Rapid and simple single-chamber nucleic acid detection system prepared through nature-inspired surface engineering

Theranostics. 2021 May 3;11(14):6735-6745. doi: 10.7150/thno.57153. eCollection 2021.

Abstract

Background: Nucleic acid (NA)-based diagnostics enable a rapid response to various diseases, but current techniques often require multiple labor-intensive steps, which is a major obstacle to successful translation to a clinical setting. Methods: We report on a surface-engineered single-chamber device for NA extraction and in situ amplification without sample transfer. Our system has two reaction sites: a NA extraction chamber whose surface is patterned with micropillars and a reaction chamber filled with reagents for in situ polymerase-based NA amplification. These two sites are integrated in a single microfluidic device; we applied plastic injection molding for cost-effective, mass-production of the designed device. The micropillars were chemically activated via a nature-inspired silica coating to possess a specific affinity to NA. Results: As a proof-of-concept, a colorimetric pH indicator was coupled to the on-chip analysis of NA for the rapid and convenient detection of pathogens. The NA enrichment efficiency was dependent on the lysate incubation time, as diffusion controls the NA contact with the engineered surface. We could detect down to 1×103 CFU by the naked eye within one hour of the total assay time. Conclusion: We anticipate that the surface engineering technique for NA enrichment could be easily integrated as a part of various types of microfluidic chips for rapid and convenient nucleic acid-based diagnostics.

Keywords: colorimetric assay; injection molding; nucleic acid-based diagnostics; pathogen detection; surface coating.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Colorimetry / methods
  • DNA, Bacterial / analysis*
  • Escherichia coli / genetics
  • Escherichia coli / isolation & purification
  • Humans
  • Lab-On-A-Chip Devices*
  • Microfluidics / methods
  • Microscopy, Electron, Scanning
  • Nucleic Acid Amplification Techniques / instrumentation*
  • Nucleic Acid Amplification Techniques / methods*
  • Nucleic Acids / isolation & purification*
  • Polycarboxylate Cement / chemistry
  • Real-Time Polymerase Chain Reaction
  • Silicon Dioxide / chemistry
  • Staphylococcus aureus / genetics
  • Staphylococcus aureus / isolation & purification
  • Surface Properties

Substances

  • DNA, Bacterial
  • Nucleic Acids
  • Polycarboxylate Cement
  • polycarbonate
  • Silicon Dioxide