Mechanism of reactivation of the peroxidase catalytic activity of human cyclooxygenases by reducing cosubstrate quercetin

J Mol Graph Model. 2021 Sep:107:107941. doi: 10.1016/j.jmgm.2021.107941. Epub 2021 May 28.

Abstract

Our earlier studies show that the peroxidase activity of cyclooxygenase 1 and 2 (COX-1 and COX-2) can be reactivated in vitro and in vivo by the presence of certain naturally-occurring flavonoids such as quercetin and myricetin, which serve as reducing cosubstrates. These compounds can activate COX at nanomolar concentrations. In the present study, quercetin is used as a representative model compound to investigate the chemical mechanism by which the peroxidase activity of human COX-1 and COX-2 is reactivated after each catalytic cycle. Molecular docking and quantum mechanics calculations are carried out to probe the interactions of quercetin with the peroxidase sites of COX-1/2 and the reactivation mechanism. It is found that some of the partially-ionized states of quercetin can bind tightly and closely inside the peroxidase active sites of the COX enzymes and directly interact with heme Fe ion. While quercetin contains several phenolic hydroxyl groups, it is found that only the C-3'-OH group can effectively donate an electron for the reduction of heme because it not only can bind closely and tightly inside the peroxidase sites of COX-1/2, but it can also facilely donate an electron to heme Fe ion. This investigation provides a mechanistic explanation for the chemical process by which quercetin reactivates COX-1/2 peroxidases. This knowledge would aid in the rational design of drugs that can selectively target the peroxidase sites of COX-1/2 either as activators or inhibitors.

Keywords: Cyclooxygenase; Mechanism of enzyme activation; Peroxidase activity; Quercetin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cyclooxygenase 2
  • Humans
  • Molecular Docking Simulation
  • Peroxidase*
  • Peroxidases
  • Quercetin*

Substances

  • Quercetin
  • Peroxidases
  • Peroxidase
  • Cyclooxygenase 2