Exploiting the hydrophobic channel of the NNIBP: Discovery of novel diarylpyrimidines as HIV-1 NNRTIs against wild-type and K103N mutant viruses

Bioorg Med Chem. 2021 Jul 15:42:116239. doi: 10.1016/j.bmc.2021.116239. Epub 2021 May 28.

Abstract

To further explore the chemical space surrounding the "hydrophobic channel" of the NNRTI binding pocket (NNIBP), a new series of diarylpyrimidines (DAPYs) were designed and synthesized as potent HIV-1 non-nucleoside RT inhibitors (NNRTIs). The target compounds were evaluated for anti-HIV potency in MT-4 cells. Most of the synthesized DAPYs exhibited moderate to excellent activity against the HIV-1 wild-type (WT) strain with EC50 values ranging from 16 nM to 0.722 µM. Interestingly, few compounds displayed remarkable activity in inhibiting K103N mutant virus with EC50 values ranging from 39 nM to 1.708 µM. Notably, FS2 (EC50(IIIB) = 16 nM, EC50(K103N) = 39 nM, SI = 294) was identified as the most significant compound, which was considerably more potent than nevirapine, lamivudine, and comparable to zidovudine. Additionally, the HIV-1 RT inhibition assay confirmed their binding target. Preliminary structure-activity relationships (SARs) and molecular modeling studies were also performed, providing significant suggestions for further optimization.

Keywords: Antiviral drug; Drug design; Drug resistance; HIV-1; NNRTI.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-HIV Agents / chemistry
  • Anti-HIV Agents / pharmacology*
  • Dose-Response Relationship, Drug
  • Drug Discovery*
  • HIV Reverse Transcriptase / antagonists & inhibitors*
  • HIV Reverse Transcriptase / metabolism
  • HIV-1 / drug effects*
  • HIV-1 / genetics
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Microbial Sensitivity Tests
  • Molecular Structure
  • Mutation
  • Reverse Transcriptase Inhibitors / chemistry
  • Reverse Transcriptase Inhibitors / pharmacology*
  • Structure-Activity Relationship

Substances

  • Anti-HIV Agents
  • Reverse Transcriptase Inhibitors
  • HIV Reverse Transcriptase