Mitochondrial DNA: cellular genotoxic stress sentinel

Trends Biochem Sci. 2021 Oct;46(10):812-821. doi: 10.1016/j.tibs.2021.05.004. Epub 2021 Jun 1.

Abstract

High copy number, damage prone, and lean on repair mechanisms are unique features of mitochondrial DNA (mtDNA) that are hard to reconcile with its essentiality for oxidative phosphorylation, the primary function ascribed to this maternally inherited component of our genome. We propose that mtDNA is also a genotoxic stress sentinel, as well as a direct second messenger of this type of cellular stress. Here, we discuss existing evidence for this sentinel/effector role through the ability of mtDNA to escape the confines of the mitochondrial matrix and activate nuclear DNA damage/repair responses via interferon-stimulated gene products and other downstream effectors. However, this arrangement may come at a cost, leading to cancer chemoresistance and contributing to inflammation, disease pathology, and aging.

Keywords: DNA repair; cGAS-STING; chemoresistance; interferon-stimulated gene (ISG); mtDNA; retrograde signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cell Nucleus / metabolism
  • DNA Damage
  • DNA Repair
  • DNA, Mitochondrial* / genetics
  • Mitochondria* / metabolism
  • Oxidative Stress

Substances

  • DNA, Mitochondrial