Simultaneous enhancement of power generation and chlorophenol degradation in nonmodified microbial fuel cells using an electroactive biofilm carbon felt anode

Sci Total Environ. 2021 Aug 20:783:147045. doi: 10.1016/j.scitotenv.2021.147045. Epub 2021 Apr 19.

Abstract

Microbial fuel cells (MFCs) are an emerging technique presenting remarkable potential. In the current MFC, an electroactive biofilm anode was inoculated with activated sludge from a local municipal sewage treatment plant. The output voltage peaked at 0.60 V and 0.56 V in MFCs cultured with 2-chlorophenol (MFC-2-CP) and 2,4-dichlorophenol (MFC-2,4-DCP), respectively. The degradation and mineralization efficiency in MFC-2-CP were 100.0% and 82.0%, respectively. Based on the bacterial 16S rRNA gene sequence analysis, abundant Acinetobacter and Azospirillum existed during both the bioelectricity and biodegradation stages in MFC-2-CP, but different patterns were exhibited in MFC-2,4-DCP. The electrogenic bacteria relied on the electron transfer pathway of nicotinamide adenine dinucleotide dehydrogenase, succinate dehydrogenase and terminal oxidase, while the electrons were transferred to the extracellular electrode by cytochrome C, riboflavin, degradation products of CPs and flagella. 2-CP and 2,4-DCP were biodegraded into less toxic cyclohexanol via dichlorination, hydroxylation, and hydrogenation; hereafter, the ring was opened to generate long-chain hydrocarbons, and finally mineralized into CO2 and H2O. This work provided a new strategy for MFCs in power generation and contaminant treatment.

Keywords: Chlorophenols; Degradation; Electroactive biofilm anode; Mechanisms; Microbial fuel cell; Power generation.