Guaiacol Nitration in a Simulated Atmospheric Aerosol with an Emphasis on Atmospheric Nitrophenol Formation Mechanisms

ACS Earth Space Chem. 2021 May 20;5(5):1083-1093. doi: 10.1021/acsearthspacechem.1c00014. Epub 2021 Apr 12.

Abstract

Atmospheric nitrophenols are pollutants of concern due to their toxicity and light-absorption characteristics and their low reactivity resulting in relatively long residence times in the environment. We investigate multiphase nitrophenol formation from guaiacol in a simulated atmospheric aerosol and support observations with the corresponding chemical mechanisms. The maximal secondary organic aerosol (SOA) yield (42%) is obtained under illumination at 80% relative humidity. Among the identified nitrophenols, 4-nitrocatechol (3.6% yield) is the prevailing species in the particulate phase. The results point to the role of water in catechol and further 4-nitrocatechol formation from guaiacol. In addition, a new pathway of dark nitrophenol formation is suggested, which prevailed in dry air and roughly yielded 1% nitroguaiacols. Furthermore, the proposed mechanism possibly leads to oligomer formation via a phenoxy radical formation by oxidation with HONO.