Depression Diagnosis Modeling With Advanced Computational Methods: Frequency-Domain eMVAR and Deep Learning

Clin EEG Neurosci. 2022 Jan;53(1):24-36. doi: 10.1177/15500594211018545. Epub 2021 Jun 3.

Abstract

Electroencephalogram (EEG)-based automated depression diagnosis systems have been suggested for early and accurate detection of mood disorders. EEG signals are highly irregular, nonlinear, and nonstationary in nature and are traditionally studied from a linear viewpoint by means of statistical and frequency features. Since, linear metrics present certain limitations and nonlinear methods have proven to be an efficient tool in understanding the complexities of the brain in the identification of underlying behavior of biological signals, such as electrocardiogram, EEG and magnetoencephalogram and thus, can be applied to all nonstationary signals. Various nonlinear algorithms can be used in the analysis of EEG signals. In this research paper, we aim to develop a novel methodology for EEG-based depression diagnosis utilizing 2 advanced computational techniques: frequency-domain extended multivariate autoregressive (eMVAR) and deep learning (DL). We proposed a hybrid method comprising a pretrained ResNet-50 and long-short term memory (LSTM) to capture depression-specific information and compared with a strong conventional machine learning (ML) framework having eMVAR connectivity features. The following 8 causality measures, which interpret the interaction mechanisms among spectrally decomposed oscillations, were used to extract features from multivariate EEG time series: directed coherence (DC), directed transfer function (DTF), partial DC (PDC), generalized PDC (gPDC), extended DC (eDC), delayed DC (dDC), extended PDC (ePDC), and delayed PDC (dPDC). The classification accuracies were 84% with DC, 85% with DTF, 95.3% with PDC, 95.1% with gPDC, 84.8% with eDC, 84.6% with dDC, 84.2% with ePDC, and 95.9% with dPDC for the eMVAR framework. Through a DL framework (ResNet-50 + LSTM), the classification accuracy was achieved as 90.22%. The results demonstrate that our DL methodology is a competitive alternative to the strong feature extraction-based ML methods in depression classification.

Keywords: EEG signal processing; deep learning; depression diagnosis; metamodeling; multivariate autoregressive analysis.

MeSH terms

  • Algorithms
  • Brain
  • Deep Learning*
  • Depression / diagnosis
  • Electroencephalography
  • Humans
  • Signal Processing, Computer-Assisted