Assessment of Planting Method and Deficit Irrigation Impacts on Physio-Morphology, Grain Yield and Water Use Efficiency of Maize (Zea mays L.) on Vertisols of Semi-Arid Tropics

Plants (Basel). 2021 May 29;10(6):1094. doi: 10.3390/plants10061094.

Abstract

Agriculture in a water-limited environment is critically important for today and for the future. This research evaluates the impact of deficit irrigation in different planting methods on the physio-morphological traits, grain yield and WUE of maize (Zea mays L.). The experiment was carried out in 2015 and 2016, consisting of three planting methods (i.e., BBF, SNF, and DWF) and four irrigation levels (i.e., I10D: irrigation once in ten days, I40: irrigation at 40% DASM, I50: irrigation at 50% DASM, and I60: irrigation at 60% DASM). The results reveal that varying degrees of water stress due to planting methods and irrigation levels greatly influenced the maize physio-morphological traits and yield attributes. The combined effect of DWF + I50 benefited the maize in terms of higher leaf area, RWC, SPAD values, CGR, and LAD, followed by the SNF method at 60 DAS. As a result, DWF + I50 and SNF + I50 had higher 100 grain weight (30.5 to 31.8 g), cob weight (181.4 to 189.6 g cob-1) and grain yield (35.3% to 36.4%) compared to other treatments. However, the reduction in the number of irrigations (24.0%) under SNF + I50 resulted in a 34% water saving. Thus, under a water-limited situation in semi-arid tropics, the practice of the SNF method + I50 could be an alternative way to explore the physio-morphological benefits in maize.

Keywords: deficit irrigation; maize; planting methods; proline; total soluble solids.