Combination of Mesenchymal Stem Cell-Delivered Oncolytic Virus with Prodrug Activation Increases Efficacy and Safety of Colorectal Cancer Therapy

Biomedicines. 2021 May 13;9(5):548. doi: 10.3390/biomedicines9050548.

Abstract

Although oncolytic viruses are currently being evaluated for cancer treatment in clinical trials, systemic administration is hindered by many factors that prevent them from reaching the tumor cells. When administered systemically, mesenchymal stem cells (MSCs) target tumors, and therefore constitute good cell carriers for oncolytic viruses. MSCs were primed with trichostatin A under hypoxia, which upregulated the expression of CXCR4, a chemokine receptor involved in tumor tropism, and coxsackievirus and adenovirus receptor that plays an important role in adenoviral infection. After priming, MSCs were loaded with conditionally replicative adenovirus that exhibits limited proliferation in cells with a functional p53 pathway and encodes Escherichia coli nitroreductase (NTR) enzymes (CRAdNTR) for targeting tumor cells. Primed MSCs increased tumor tropism and susceptibility to adenoviral infection, and successfully protected CRAdNTR from neutralization by anti-adenovirus antibodies both in vitro and in vivo, and specifically targeted p53-deficient colorectal tumors when infused intravenously. Analyses of deproteinized tissues by UPLC-MS/QTOF revealed that these MSCs converted the co-administered prodrug CB1954 into cytotoxic metabolites, such as 4-hydroxylamine and 2-amine, inducing oncolysis and tumor growth inhibition without being toxic for the host vital organs. This study shows that the combination of oncolytic viruses delivered by MSCs with the activation of prodrugs is a new cancer treatment strategy that provides a new approach for the development of oncolytic viral therapy for various cancers.

Keywords: colorectal cancer; mesenchymal stem cell; oncolytic virus; p53 mutant tumor; prodrug activation.