Transdermal Film Loaded with Garlic Oil-Acyclovir Nanoemulsion to Overcome Barriers for Its Use in Alleviating Cold Sore Conditions

Pharmaceutics. 2021 May 7;13(5):669. doi: 10.3390/pharmaceutics13050669.

Abstract

The exponentially mounting cases of herpes simplex virus infection or cold sores have become a serious global concern. Acyclovir (ACV) and garlic oil (GO)-loaded lipid nanocarrier could be a promising therapeutic approach in alleviating cold sores, as well as limiting the biopharmaceutical constraints associated with ACV absorption and therapeutic efficacy. Therefore, the objective of the current research study was to formulate an ACV-GO self-nanoemulsifying drug delivery system (ACV-GO-SNEDDS) as transdermal films. The prepared SNEDDS was optimized using an experimental mixture design. The optimized ACV-GO SNEDDS was loaded in transdermal film and was evaluated for ex vivo skin permeation and in vivo pharmacokinetic prospects. An optimized ACV-GO SNEDDs formulation constituted of 10.4% (w/w) of GO, 64.8% (w/w) of surfactant mixture (Tween 20®-Span 20®); 24.8%(w/w) of co-surfactant (Propylene glycol®), and 200mg of ACV, respectively, were prepared and characterized for particle size (Y). The observed globule size of the optimized ACV-GO SNEDDS is 170 ± 13.45 nm. The results of stability studies indicated that the stability index of optimized ACV-GO-SNEDDS was more than 92 ± 3%. This optimized ACV-GO SNEDDS was loaded in hydroxypropyl cellulose transdermal film. The outcome of the ex vivo skin permeation study demonstrated a 2.3-fold augmented permeation of ACV from the optimized ACV-GO SNEDDS HPC transdermal film in comparison to the raw ACV transdermal film. There was a 3-fold increase in the relative bioavailability of the optimized ACV-GO SNEDDS transdermal film compared to the raw ACV-HPC film. The study findings confirmed that the ACV-GO SNEDDS transdermal film exhibited excellent potential to enhance the bioavailability of ACV.

Keywords: acyclovir; bioavailability; ex vivo permeation; garlic oil; herpes simplex virus; optimization; self-nanoemulsifying drug delivery system.